16120(J) = 50 vc- 6

B. Tech 6th Semester Examination Antenna and Wave Propagation (NS)

EC-323

Time: 3 Hours

Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt any five questions by selecting one Question from each of the section A, B, C, D and section E is compulsory.

SECTION - A

- (a) Define effective aperture and effective length. Find the effective length of small dipole and λ/2 dipole with current distribution of triangular and sinusoidal respectively. (10)
 - (b) Define directivity and gain. The radiation intensity of the antenna is $U=U_m \cos^n\theta$. Prove that directivity for a source with a unidirectional pattern can be expressed as $D(\theta) = 2(n+1)$

Find the directivity

(i) $U=U_{m}\cos\theta$ (ii) $U_{m}\cos^{2}\theta$ (10)

- 2. (a) Explain pattern multiplication in antenna array. Obtain the radiation pattern of eight isotropic sources with spacing $\lambda/2$ and in phase. Use pattern multiplication. (10)
 - (b) Derive the array factor of N-element uniform linear array and hence deduce the condition under which the array will radiate in broad side and end-fire direction. (10)

[P.T.O.]

16120

SECTION - B

- 3. (a) Explain with sketches a helical antenna and describe its operation in axial mode. How does it differ from other antenna? Also write its applications. (10)
 - (b) Derive the expression for radiation resistance of short dipole and also

Find.

- The radiation resistance of a 10m length dipole operated at 500 KHz.
- (ii) How long must this antenna be for radiation resistance of 1Ω . (10)
- (a) Derive the expression for far field of half wave dipole. Also find its radiation resistance using the far field. (10)
 - (b) Explain with the help of appropriate sketches, the working of log-periodic antenna. What are its practical applications? (10)

SECTION - C

- 5. (a) What are the various feeding methods of parabolic reflectors? Explain each method with suitable diagram and also explain which method is best and why? (10)
 - (b) Explain how the directivity and gain of antenna can be measured. (10)
- 6. (a) Write a short note on following:
 - (i) Impedance measurement of antenna.
 - (ii) Radiation pattern measurement. (10)
 - (b) Discuss the design of corner reflector and flat sheet reflector. (10)

16120

SECTION - D

- A television transmitting antenna mounted at a height of 7. (a) 120m radiates 15 KW of power equally in all the directions in azimuth at a frequency of 50 MHz. Calculate (i) maximum line of sight range (ii) field strength at a receiving antenna mounted at a height of 16m at a distance of 12 km (iii) the distance at which field strength reduces to 1mV/m. (10)
 - Describe briefly the salient features of ground wave propagation. Explain the term "wave tilt of surface wave". (10)
- Assume that refraction takes place at a height of 400km and that maximum density in the ionosphere correspond to a 0.9 refractive index at 10 MHz. What will be the range for which the MUF is 10 MHz for flat earth and curved (10)earth?
 - Explain MUF, skip distance, critical frequency and multi-(10)hop propagation.

SECTION - E

- What is retarded vector potential? What is significance of (i) 9. retarded potential?
 - For isotropic radiator find the radiation intensity U₀ when power radiated is Prad.
 - Find the maximum distance that can be conveyed by a space wave when the transmitting and receiving antenna heights are 80 m and 50 m respectively
 - What are effects of ground on antenna input impedance and antenna performance?

- What is Yagi-uda-antenna and what are its applications?
- What should be the polarization of electromagnetic wave for ground wave propagation? Justify your answer.
- (vii) Find the approximate beam area when the field expression is expressed as

$$E(\theta, \phi) = \sin \theta \sin^2 \phi$$

- (viii) How to increase the radiation resistance of a loop antenna? Write down all the methods.
- What is array tapering?
- What are different antenna measurement ranges? $(2\times10=20)$